treefit.data.generate_2d_n_arms_linked_star_data¶
-
treefit.data.
generate_2d_n_arms_linked_star_data
(n_samples_list, n_arms_list, fatness)[source]¶ Generate a 2-dimensional linked star tree data.
Each star tree data contain
n_samples_vector[i]
data points and fit a star tree withn_arms_vector[i]
arms.- Parameters
n_samples_list ([int]) – The list of the number of samples to be generated. For example,
[200, 100, 300]
means that the first tree has 200 samples, the second tree has 100 samples and the third tree has 300 samples.n_arms_list ([int]) – The list of the number of arms to be generated. For example,
[3, 2, 5]
means the first tree fits a star tree with 3 arms, the second tree fits a star tree with 2 arms and the third tree fits a star tree with 5 arms. The length ofn_arms_list
must equal to the length ofn_samples_list
.fatness ([float]) – How fat from the based tree.
[0.0, 1.0]
is available value range.
- Returns
linked_star – A generated numpy.array. The rows and columns correspond to samples and features.
- Return type
numpy.array
Examples
>>> import treefit >>> from matplotlib.pyplot as plt # Generate a 2-dimensional linked star tree data that contain # 200-400-300 data points and fit a linked star tree with 3-5-4 # arms. The generated data are a bit noisy but tree-like. >>> linked_star_tree_like = ... treefit.data.generate_2d_n_arms_linked_star_data([200, 400, 300], ... [3, 5, 4], ... 0.1) >>> plt.figure() >>> plt.scatter(linked_star_tree_like[:, 0], ... linked_star_tree_like[:, 1]) # Generate a 2-dimensional linked star tree data that contain # 300-200 data points and fit a linked star tree with 4-3 arms. # The generated data are very noisy and less tree-like. >>> linked_star_less_tree_like = ... treefit.data.generate_2d_n_arms_linked_star_data([300, 200], ... [4, 3], ... 0.9) >>> plt.figure() >>> plt.scatter(linked_star_less_tree_like[:, 0], ... linked_star_less_tree_like[:, 1])